lightning/ln/
peer_channel_encryptor.rs

1// This file is Copyright its original authors, visible in version control
2// history.
3//
4// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7// You may not use this file except in accordance with one or both of these
8// licenses.
9
10use crate::prelude::*;
11
12use crate::sign::{NodeSigner, Recipient};
13use crate::ln::msgs::LightningError;
14use crate::ln::msgs;
15use crate::ln::wire;
16
17use bitcoin::hashes::{Hash, HashEngine};
18use bitcoin::hashes::sha256::Hash as Sha256;
19
20use bitcoin::hex::DisplayHex;
21
22use bitcoin::secp256k1::Secp256k1;
23use bitcoin::secp256k1::{PublicKey,SecretKey};
24use bitcoin::secp256k1::ecdh::SharedSecret;
25use bitcoin::secp256k1;
26
27use crate::crypto::chacha20poly1305rfc::ChaCha20Poly1305RFC;
28use crate::crypto::utils::hkdf_extract_expand_twice;
29use crate::util::ser::VecWriter;
30
31use core::ops::Deref;
32
33/// Maximum Lightning message data length according to
34/// [BOLT-8](https://github.com/lightning/bolts/blob/v1.0/08-transport.md#lightning-message-specification)
35/// and [BOLT-1](https://github.com/lightning/bolts/blob/master/01-messaging.md#lightning-message-format):
36pub const LN_MAX_MSG_LEN: usize = ::core::u16::MAX as usize; // Must be equal to 65535
37
38/// The (rough) size buffer to pre-allocate when encoding a message. Messages should reliably be
39/// smaller than this size by at least 32 bytes or so.
40pub const MSG_BUF_ALLOC_SIZE: usize = 2048;
41
42// Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256")
43const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1];
44// Sha256(NOISE_CK || "lightning")
45const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76];
46
47enum NoiseSecretKey<'a, 'b, NS: Deref> where NS::Target: NodeSigner {
48	InMemory(&'a SecretKey),
49	NodeSigner(&'b NS)
50}
51
52pub enum NextNoiseStep {
53	ActOne,
54	ActTwo,
55	ActThree,
56	NoiseComplete,
57}
58
59#[derive(PartialEq)]
60enum NoiseStep {
61	PreActOne,
62	PostActOne,
63	PostActTwo,
64	// When done swap noise_state for NoiseState::Finished
65}
66
67struct BidirectionalNoiseState {
68	h: [u8; 32],
69	ck: [u8; 32],
70}
71enum DirectionalNoiseState {
72	Outbound {
73		ie: SecretKey,
74	},
75	Inbound {
76		ie: Option<PublicKey>, // filled in if state >= PostActOne
77		re: Option<SecretKey>, // filled in if state >= PostActTwo
78		temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo
79	}
80}
81enum NoiseState {
82	InProgress {
83		state: NoiseStep,
84		directional_state: DirectionalNoiseState,
85		bidirectional_state: BidirectionalNoiseState,
86	},
87	Finished {
88		sk: [u8; 32],
89		sn: u64,
90		sck: [u8; 32],
91		rk: [u8; 32],
92		rn: u64,
93		rck: [u8; 32],
94	}
95}
96
97pub struct PeerChannelEncryptor {
98	their_node_id: Option<PublicKey>, // filled in for outbound, or inbound after noise_state is Finished
99
100	noise_state: NoiseState,
101}
102
103impl PeerChannelEncryptor {
104	pub fn new_outbound(their_node_id: PublicKey, ephemeral_key: SecretKey) -> PeerChannelEncryptor {
105		let mut sha = Sha256::engine();
106		sha.input(&NOISE_H);
107		sha.input(&their_node_id.serialize()[..]);
108		let h = Sha256::from_engine(sha).to_byte_array();
109
110		PeerChannelEncryptor {
111			their_node_id: Some(their_node_id),
112			noise_state: NoiseState::InProgress {
113				state: NoiseStep::PreActOne,
114				directional_state: DirectionalNoiseState::Outbound {
115					ie: ephemeral_key,
116				},
117				bidirectional_state: BidirectionalNoiseState {
118					h,
119					ck: NOISE_CK,
120				},
121			}
122		}
123	}
124
125	pub fn new_inbound<NS: Deref>(node_signer: &NS) -> PeerChannelEncryptor where NS::Target: NodeSigner {
126		let mut sha = Sha256::engine();
127		sha.input(&NOISE_H);
128		let our_node_id = node_signer.get_node_id(Recipient::Node).unwrap();
129		sha.input(&our_node_id.serialize()[..]);
130		let h = Sha256::from_engine(sha).to_byte_array();
131
132		PeerChannelEncryptor {
133			their_node_id: None,
134			noise_state: NoiseState::InProgress {
135				state: NoiseStep::PreActOne,
136				directional_state: DirectionalNoiseState::Inbound {
137					ie: None,
138					re: None,
139					temp_k2: None,
140				},
141				bidirectional_state: BidirectionalNoiseState {
142					h,
143					ck: NOISE_CK,
144				},
145			}
146		}
147	}
148
149	#[inline]
150	fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) {
151		let mut nonce = [0; 12];
152		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
153
154		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
155		let mut tag = [0; 16];
156		chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag);
157		res[plaintext.len()..].copy_from_slice(&tag);
158	}
159
160	#[inline]
161	/// Encrypts the message in res[offset..] in-place and pushes a 16-byte tag onto the end of
162	/// res.
163	fn encrypt_in_place_with_ad(res: &mut Vec<u8>, offset: usize, n: u64, key: &[u8; 32], h: &[u8]) {
164		let mut nonce = [0; 12];
165		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
166
167		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
168		let mut tag = [0; 16];
169		chacha.encrypt_full_message_in_place(&mut res[offset..], &mut tag);
170		res.extend_from_slice(&tag);
171	}
172
173	fn decrypt_in_place_with_ad(inout: &mut [u8], n: u64, key: &[u8; 32], h: &[u8]) -> Result<(), LightningError> {
174		let mut nonce = [0; 12];
175		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
176
177		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
178		let (inout, tag) = inout.split_at_mut(inout.len() - 16);
179		if chacha.check_decrypt_in_place(inout, tag).is_err() {
180			return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
181		}
182		Ok(())
183	}
184
185	#[inline]
186	fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), LightningError> {
187		let mut nonce = [0; 12];
188		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);
189
190		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
191		if chacha.variable_time_decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]).is_err() {
192			return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
193		}
194		Ok(())
195	}
196
197	#[inline]
198	fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] {
199		let (t1, t2) = hkdf_extract_expand_twice(&state.ck, ss.as_ref());
200		state.ck = t1;
201		t2
202	}
203
204	#[inline]
205	fn outbound_noise_act<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) {
206		let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key);
207
208		let mut sha = Sha256::engine();
209		sha.input(&state.h);
210		sha.input(&our_pub.serialize()[..]);
211		state.h = Sha256::from_engine(sha).to_byte_array();
212
213		let ss = SharedSecret::new(&their_key, &our_key);
214		let temp_k = PeerChannelEncryptor::hkdf(state, ss);
215
216		let mut res = [0; 50];
217		res[1..34].copy_from_slice(&our_pub.serialize()[..]);
218		PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]);
219
220		let mut sha = Sha256::engine();
221		sha.input(&state.h);
222		sha.input(&res[34..]);
223		state.h = Sha256::from_engine(sha).to_byte_array();
224
225		(res, temp_k)
226	}
227
228	#[inline]
229	fn inbound_noise_act<'a, 'b, NS: Deref>(
230		state: &mut BidirectionalNoiseState, act: &[u8], secret_key: NoiseSecretKey<'a, 'b, NS>
231	) -> Result<(PublicKey, [u8; 32]), LightningError> where NS::Target: NodeSigner {
232		assert_eq!(act.len(), 50);
233
234		if act[0] != 0 {
235			return Err(LightningError{err: format!("Unknown handshake version number {}", act[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
236		}
237
238		let their_pub = match PublicKey::from_slice(&act[1..34]) {
239			Err(_) => return Err(LightningError{err: format!("Invalid public key {}", &act[1..34].as_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
240			Ok(key) => key,
241		};
242
243		let mut sha = Sha256::engine();
244		sha.input(&state.h);
245		sha.input(&their_pub.serialize()[..]);
246		state.h = Sha256::from_engine(sha).to_byte_array();
247
248		let ss = match secret_key {
249			NoiseSecretKey::InMemory(secret_key) => SharedSecret::new(&their_pub, secret_key),
250			NoiseSecretKey::NodeSigner(node_signer) => node_signer
251				.ecdh(Recipient::Node, &their_pub, None)
252				.map_err(|_| LightningError {
253					err: "Failed to derive shared secret".to_owned(),
254					action: msgs::ErrorAction::DisconnectPeer { msg: None }
255				})?,
256		};
257		let temp_k = PeerChannelEncryptor::hkdf(state, ss);
258
259		let mut dec = [0; 0];
260		PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?;
261
262		let mut sha = Sha256::engine();
263		sha.input(&state.h);
264		sha.input(&act[34..]);
265		state.h = Sha256::from_engine(sha).to_byte_array();
266
267		Ok((their_pub, temp_k))
268	}
269
270	pub fn get_act_one<C: secp256k1::Signing>(&mut self, secp_ctx: &Secp256k1<C>) -> [u8; 50] {
271		match self.noise_state {
272			NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } =>
273				match directional_state {
274					&DirectionalNoiseState::Outbound { ref ie } => {
275						if *state != NoiseStep::PreActOne {
276							panic!("Requested act at wrong step");
277						}
278
279						let (res, _) = PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap());
280						*state = NoiseStep::PostActOne;
281						res
282					},
283					_ => panic!("Wrong direction for act"),
284				},
285			_ => panic!("Cannot get act one after noise handshake completes"),
286		}
287	}
288
289	pub fn process_act_one_with_keys<C: secp256k1::Signing, NS: Deref>(
290		&mut self, act_one: &[u8], node_signer: &NS, our_ephemeral: SecretKey, secp_ctx: &Secp256k1<C>)
291	-> Result<[u8; 50], LightningError> where NS::Target: NodeSigner {
292		assert_eq!(act_one.len(), 50);
293
294		match self.noise_state {
295			NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } =>
296				match directional_state {
297					&mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => {
298						if *state != NoiseStep::PreActOne {
299							panic!("Requested act at wrong step");
300						}
301
302						let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_one, NoiseSecretKey::NodeSigner(node_signer))?;
303						ie.get_or_insert(their_pub);
304
305						re.get_or_insert(our_ephemeral);
306
307						let (res, temp_k) =
308							PeerChannelEncryptor::outbound_noise_act(secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap());
309						*temp_k2 = Some(temp_k);
310						*state = NoiseStep::PostActTwo;
311						Ok(res)
312					},
313					_ => panic!("Wrong direction for act"),
314				},
315			_ => panic!("Cannot get act one after noise handshake completes"),
316		}
317	}
318
319	pub fn process_act_two<NS: Deref>(
320		&mut self, act_two: &[u8], node_signer: &NS)
321	-> Result<([u8; 66], PublicKey), LightningError> where NS::Target: NodeSigner {
322		assert_eq!(act_two.len(), 50);
323
324		let final_hkdf;
325		let ck;
326		let res: [u8; 66] = match self.noise_state {
327			NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
328				match directional_state {
329					&DirectionalNoiseState::Outbound { ref ie } => {
330						if *state != NoiseStep::PostActOne {
331							panic!("Requested act at wrong step");
332						}
333
334						let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_two, NoiseSecretKey::<NS>::InMemory(&ie))?;
335
336						let mut res = [0; 66];
337						let our_node_id = node_signer.get_node_id(Recipient::Node).map_err(|_| LightningError {
338							err: "Failed to encrypt message".to_owned(),
339							action: msgs::ErrorAction::DisconnectPeer { msg: None }
340						})?;
341
342						PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]);
343
344						let mut sha = Sha256::engine();
345						sha.input(&bidirectional_state.h);
346						sha.input(&res[1..50]);
347						bidirectional_state.h = Sha256::from_engine(sha).to_byte_array();
348
349						let ss = node_signer.ecdh(Recipient::Node, &re, None).map_err(|_| LightningError {
350							err: "Failed to derive shared secret".to_owned(),
351							action: msgs::ErrorAction::DisconnectPeer { msg: None }
352						})?;
353						let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
354
355						PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]);
356						final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
357						ck = bidirectional_state.ck.clone();
358						res
359					},
360					_ => panic!("Wrong direction for act"),
361				},
362			_ => panic!("Cannot get act one after noise handshake completes"),
363		};
364
365		let (sk, rk) = final_hkdf;
366		self.noise_state = NoiseState::Finished {
367			sk,
368			sn: 0,
369			sck: ck.clone(),
370			rk,
371			rn: 0,
372			rck: ck,
373		};
374
375		Ok((res, self.their_node_id.unwrap().clone()))
376	}
377
378	pub fn process_act_three(&mut self, act_three: &[u8]) -> Result<PublicKey, LightningError> {
379		assert_eq!(act_three.len(), 66);
380
381		let final_hkdf;
382		let ck;
383		match self.noise_state {
384			NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
385				match directional_state {
386					&DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => {
387						if *state != NoiseStep::PostActTwo {
388							panic!("Requested act at wrong step");
389						}
390						if act_three[0] != 0 {
391							return Err(LightningError{err: format!("Unknown handshake version number {}", act_three[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
392						}
393
394						let mut their_node_id = [0; 33];
395						PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?;
396						self.their_node_id = Some(match PublicKey::from_slice(&their_node_id) {
397							Ok(key) => key,
398							Err(_) => return Err(LightningError{err: format!("Bad node_id from peer, {}", &their_node_id.as_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
399						});
400
401						let mut sha = Sha256::engine();
402						sha.input(&bidirectional_state.h);
403						sha.input(&act_three[1..50]);
404						bidirectional_state.h = Sha256::from_engine(sha).to_byte_array();
405
406						let ss = SharedSecret::new(&self.their_node_id.unwrap(), &re.unwrap());
407						let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);
408
409						PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?;
410						final_hkdf = hkdf_extract_expand_twice(&bidirectional_state.ck, &[0; 0]);
411						ck = bidirectional_state.ck.clone();
412					},
413					_ => panic!("Wrong direction for act"),
414				},
415			_ => panic!("Cannot get act one after noise handshake completes"),
416		}
417
418		let (rk, sk) = final_hkdf;
419		self.noise_state = NoiseState::Finished {
420			sk,
421			sn: 0,
422			sck: ck.clone(),
423			rk,
424			rn: 0,
425			rck: ck,
426		};
427
428		Ok(self.their_node_id.unwrap().clone())
429	}
430
431	/// Builds sendable bytes for a message.
432	///
433	/// `msgbuf` must begin with 16 + 2 dummy/0 bytes, which will be filled with the encrypted
434	/// message length and its MAC. It should then be followed by the message bytes themselves
435	/// (including the two byte message type).
436	///
437	/// For effeciency, the [`Vec::capacity`] should be at least 16 bytes larger than the
438	/// [`Vec::len`], to avoid reallocating for the message MAC, which will be appended to the vec.
439	fn encrypt_message_with_header_0s(&mut self, msgbuf: &mut Vec<u8>) {
440		let msg_len = msgbuf.len() - 16 - 2;
441		if msg_len > LN_MAX_MSG_LEN {
442			panic!("Attempted to encrypt message longer than 65535 bytes!");
443		}
444
445		match self.noise_state {
446			NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
447				if *sn >= 1000 {
448					let (new_sck, new_sk) = hkdf_extract_expand_twice(sck, sk);
449					*sck = new_sck;
450					*sk = new_sk;
451					*sn = 0;
452				}
453
454				Self::encrypt_with_ad(&mut msgbuf[0..16+2], *sn, sk, &[0; 0], &(msg_len as u16).to_be_bytes());
455				*sn += 1;
456
457				Self::encrypt_in_place_with_ad(msgbuf, 16+2, *sn, sk, &[0; 0]);
458				*sn += 1;
459			},
460			_ => panic!("Tried to encrypt a message prior to noise handshake completion"),
461		}
462	}
463
464	/// Encrypts the given pre-serialized message, returning the encrypted version.
465	/// panics if msg.len() > 65535 or Noise handshake has not finished.
466	pub fn encrypt_buffer(&mut self, mut msg: MessageBuf) -> Vec<u8> {
467		self.encrypt_message_with_header_0s(&mut msg.0);
468		msg.0
469	}
470
471	/// Encrypts the given message, returning the encrypted version.
472	/// panics if the length of `message`, once encoded, is greater than 65535 or if the Noise
473	/// handshake has not finished.
474	pub fn encrypt_message<M: wire::Type>(&mut self, message: &M) -> Vec<u8> {
475		// Allocate a buffer with 2KB, fitting most common messages. Reserve the first 16+2 bytes
476		// for the 2-byte message type prefix and its MAC.
477		let mut res = VecWriter(Vec::with_capacity(MSG_BUF_ALLOC_SIZE));
478		res.0.resize(16 + 2, 0);
479		wire::write(message, &mut res).expect("In-memory messages must never fail to serialize");
480
481		self.encrypt_message_with_header_0s(&mut res.0);
482		res.0
483	}
484
485	/// Decrypts a message length header from the remote peer.
486	/// panics if noise handshake has not yet finished or msg.len() != 18
487	pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result<u16, LightningError> {
488		assert_eq!(msg.len(), 16+2);
489
490		match self.noise_state {
491			NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => {
492				if *rn >= 1000 {
493					let (new_rck, new_rk) = hkdf_extract_expand_twice(rck, rk);
494					*rck = new_rck;
495					*rk = new_rk;
496					*rn = 0;
497				}
498
499				let mut res = [0; 2];
500				Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?;
501				*rn += 1;
502				Ok(u16::from_be_bytes(res))
503			},
504			_ => panic!("Tried to decrypt a message prior to noise handshake completion"),
505		}
506	}
507
508	/// Decrypts the given message up to msg.len() - 16. Bytes after msg.len() - 16 will be left
509	/// undefined (as they contain the Poly1305 tag bytes).
510	///
511	/// panics if msg.len() > 65535 + 16
512	pub fn decrypt_message(&mut self, msg: &mut [u8]) -> Result<(), LightningError> {
513		if msg.len() > LN_MAX_MSG_LEN + 16 {
514			panic!("Attempted to decrypt message longer than 65535 + 16 bytes!");
515		}
516
517		match self.noise_state {
518			NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => {
519				Self::decrypt_in_place_with_ad(&mut msg[..], *rn, rk, &[0; 0])?;
520				*rn += 1;
521				Ok(())
522			},
523			_ => panic!("Tried to decrypt a message prior to noise handshake completion"),
524		}
525	}
526
527	pub fn get_noise_step(&self) -> NextNoiseStep {
528		match self.noise_state {
529			NoiseState::InProgress {ref state, ..} => {
530				match state {
531					&NoiseStep::PreActOne => NextNoiseStep::ActOne,
532					&NoiseStep::PostActOne => NextNoiseStep::ActTwo,
533					&NoiseStep::PostActTwo => NextNoiseStep::ActThree,
534				}
535			},
536			NoiseState::Finished {..} => NextNoiseStep::NoiseComplete,
537		}
538	}
539
540	pub fn is_ready_for_encryption(&self) -> bool {
541		match self.noise_state {
542			NoiseState::InProgress {..} => { false },
543			NoiseState::Finished {..} => { true }
544		}
545	}
546}
547
548/// A buffer which stores an encoded message (including the two message-type bytes) with some
549/// padding to allow for future encryption/MACing.
550pub struct MessageBuf(Vec<u8>);
551impl MessageBuf {
552	/// Creates a new buffer from an encoded message (i.e. the two message-type bytes followed by
553	/// the message contents).
554	///
555	/// Panics if the message is longer than 2^16.
556	pub fn from_encoded(encoded_msg: &[u8]) -> Self {
557		if encoded_msg.len() > LN_MAX_MSG_LEN {
558			panic!("Attempted to encrypt message longer than 65535 bytes!");
559		}
560		// In addition to the message (continaing the two message type bytes), we also have to add
561		// the message length header (and its MAC) and the message MAC.
562		let mut res = Vec::with_capacity(encoded_msg.len() + 16*2 + 2);
563		res.resize(encoded_msg.len() + 16 + 2, 0);
564		res[16 + 2..].copy_from_slice(&encoded_msg);
565		Self(res)
566	}
567}
568
569#[cfg(test)]
570mod tests {
571	use super::{MessageBuf, LN_MAX_MSG_LEN};
572
573	use bitcoin::hex::FromHex;
574	use bitcoin::secp256k1::{PublicKey, SecretKey};
575	use bitcoin::secp256k1::Secp256k1;
576
577	use crate::ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState};
578	use crate::util::test_utils::TestNodeSigner;
579
580	fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor {
581		let their_node_id = PublicKey::from_slice(&<Vec<u8>>::from_hex("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap();
582		let secp_ctx = Secp256k1::signing_only();
583
584		let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id, SecretKey::from_slice(&<Vec<u8>>::from_hex("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap());
585		assert_eq!(outbound_peer.get_act_one(&secp_ctx)[..], <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]);
586		outbound_peer
587	}
588
589	fn get_inbound_peer_for_test_vectors() -> PeerChannelEncryptor {
590		// transport-responder successful handshake
591		let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
592		let our_ephemeral = SecretKey::from_slice(&<Vec<u8>>::from_hex("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
593		let secp_ctx = Secp256k1::new();
594		let node_signer = TestNodeSigner::new(our_node_id);
595
596		let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
597
598		let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
599		assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
600
601		let act_three = <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
602		// test vector doesn't specify the initiator static key, but it's the same as the one
603		// from transport-initiator successful handshake
604		assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], <Vec<u8>>::from_hex("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]);
605
606		match inbound_peer.noise_state {
607			NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
608				assert_eq!(sk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
609				assert_eq!(sn, 0);
610				assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
611				assert_eq!(rk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
612				assert_eq!(rn, 0);
613				assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
614			},
615			_ => panic!()
616		}
617
618		inbound_peer
619	}
620
621	#[test]
622	fn noise_initiator_test_vectors() {
623		let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
624		let node_signer = TestNodeSigner::new(our_node_id);
625
626		{
627			// transport-initiator successful handshake
628			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
629
630			let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
631			assert_eq!(outbound_peer.process_act_two(&act_two[..], &&node_signer).unwrap().0[..], <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
632
633			match outbound_peer.noise_state {
634				NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
635					assert_eq!(sk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
636					assert_eq!(sn, 0);
637					assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
638					assert_eq!(rk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
639					assert_eq!(rn, 0);
640					assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
641				},
642				_ => panic!()
643			}
644		}
645		{
646			// transport-initiator act2 short read test
647			// Can't actually test this cause process_act_two requires you pass the right length!
648		}
649		{
650			// transport-initiator act2 bad version test
651			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
652
653			let act_two = <Vec<u8>>::from_hex("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
654			assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
655		}
656
657		{
658			// transport-initiator act2 bad key serialization test
659			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
660
661			let act_two = <Vec<u8>>::from_hex("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
662			assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
663		}
664
665		{
666			// transport-initiator act2 bad MAC test
667			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
668
669			let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec();
670			assert!(outbound_peer.process_act_two(&act_two[..], &&node_signer).is_err());
671		}
672	}
673
674	#[test]
675	fn noise_responder_test_vectors() {
676		let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
677		let our_ephemeral = SecretKey::from_slice(&<Vec<u8>>::from_hex("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();
678		let secp_ctx = Secp256k1::new();
679		let node_signer = TestNodeSigner::new(our_node_id);
680
681		{
682			let _ = get_inbound_peer_for_test_vectors();
683		}
684		{
685			// transport-responder act1 short read test
686			// Can't actually test this cause process_act_one requires you pass the right length!
687		}
688		{
689			// transport-responder act1 bad version test
690			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
691
692			let act_one = <Vec<u8>>::from_hex("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
693			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
694		}
695		{
696			// transport-responder act1 bad key serialization test
697			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
698
699			let act_one =<Vec<u8>>::from_hex("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
700			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
701		}
702		{
703			// transport-responder act1 bad MAC test
704			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
705
706			let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec();
707			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).is_err());
708		}
709		{
710			// transport-responder act3 bad version test
711			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
712
713			let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
714			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
715
716			let act_three = <Vec<u8>>::from_hex("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
717			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
718		}
719		{
720			// transport-responder act3 short read test
721			// Can't actually test this cause process_act_three requires you pass the right length!
722		}
723		{
724			// transport-responder act3 bad MAC for ciphertext test
725			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
726
727			let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
728			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
729
730			let act_three = <Vec<u8>>::from_hex("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
731			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
732		}
733		{
734			// transport-responder act3 bad rs test
735			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
736
737			let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
738			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
739
740			let act_three = <Vec<u8>>::from_hex("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec();
741			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
742		}
743		{
744			// transport-responder act3 bad MAC test
745			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&&node_signer);
746
747			let act_one = <Vec<u8>>::from_hex("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
748			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &&node_signer, our_ephemeral.clone(), &secp_ctx).unwrap()[..], <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);
749
750			let act_three = <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec();
751			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
752		}
753	}
754
755
756	#[test]
757	fn message_encryption_decryption_test_vectors() {
758		// We use the same keys as the initiator and responder test vectors, so we copy those tests
759		// here and use them to encrypt.
760		let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
761
762		{
763			let our_node_id = SecretKey::from_slice(&<Vec<u8>>::from_hex("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();
764			let node_signer = TestNodeSigner::new(our_node_id);
765
766			let act_two = <Vec<u8>>::from_hex("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
767			assert_eq!(outbound_peer.process_act_two(&act_two[..], &&node_signer).unwrap().0[..], <Vec<u8>>::from_hex("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);
768
769			match outbound_peer.noise_state {
770				NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
771					assert_eq!(sk, <Vec<u8>>::from_hex("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
772					assert_eq!(sn, 0);
773					assert_eq!(sck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
774					assert_eq!(rk, <Vec<u8>>::from_hex("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
775					assert_eq!(rn, 0);
776					assert_eq!(rck, <Vec<u8>>::from_hex("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
777				},
778				_ => panic!()
779			}
780		}
781
782		let mut inbound_peer = get_inbound_peer_for_test_vectors();
783
784		for i in 0..1005 {
785			let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f];
786			let mut res = outbound_peer.encrypt_buffer(MessageBuf::from_encoded(&msg));
787			assert_eq!(res.len(), 5 + 2*16 + 2);
788
789			let len_header = res[0..2+16].to_vec();
790			assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len());
791
792			if i == 0 {
793				assert_eq!(res, <Vec<u8>>::from_hex("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap());
794			} else if i == 1 {
795				assert_eq!(res, <Vec<u8>>::from_hex("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap());
796			} else if i == 500 {
797				assert_eq!(res, <Vec<u8>>::from_hex("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap());
798			} else if i == 501 {
799				assert_eq!(res, <Vec<u8>>::from_hex("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap());
800			} else if i == 1000 {
801				assert_eq!(res, <Vec<u8>>::from_hex("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap());
802			} else if i == 1001 {
803				assert_eq!(res, <Vec<u8>>::from_hex("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap());
804			}
805
806			inbound_peer.decrypt_message(&mut res[2+16..]).unwrap();
807			assert_eq!(res[2 + 16..res.len() - 16], msg[..]);
808		}
809	}
810
811	#[test]
812	fn max_msg_len_limit_value() {
813		assert_eq!(LN_MAX_MSG_LEN, 65535);
814		assert_eq!(LN_MAX_MSG_LEN, ::core::u16::MAX as usize);
815	}
816
817	#[test]
818	#[should_panic(expected = "Attempted to encrypt message longer than 65535 bytes!")]
819	fn max_message_len_encryption() {
820		let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
821		let msg = [4u8; LN_MAX_MSG_LEN + 1];
822		outbound_peer.encrypt_buffer(MessageBuf::from_encoded(&msg));
823	}
824
825	#[test]
826	#[should_panic(expected = "Attempted to decrypt message longer than 65535 + 16 bytes!")]
827	fn max_message_len_decryption() {
828		let mut inbound_peer = get_inbound_peer_for_test_vectors();
829
830		// MSG should not exceed LN_MAX_MSG_LEN + 16
831		let mut msg = [4u8; LN_MAX_MSG_LEN + 17];
832		inbound_peer.decrypt_message(&mut msg).unwrap();
833	}
834}